Review on Week 2

Defintion of a Sequence

Definition (c.f. Definition 3.1.1). Formally speaking, a sequence of real numbers, or simply a sequence is a function $X : \mathbb{N} \to \mathbb{R}$ whose domain is the set of natural numbers N and ranges in R. In other words, the sequence X assigns each natural number $n = 1, 2, 3, ...$ a real number. We usually denote a sequence by

$$
X = (x_n)
$$
 or $X = (x_1, x_2, x_3, ...),$

where x_n is the *n*-th term of the sequence.

Remark. Sequences are not sets, the order of the terms matter. For instance, the sequences $X = (1, 2, 3, 1, 2, 3, ...)$ and $Y = (3, 2, 1, 3, 2, 1, ...)$ are not the same although they both contain 1, 2 and 3 as their elements.

Example (c.f. Example 3.1.2). The following are some examples of sequences.

- Let $b \in \mathbb{R}$. The sequence $B = (a, a, a, ...)$ is called a *constant sequence*. i.e., every term in the sequence is the same.
- The sequence $X = (1/2^n)$ represents the sequence $(1/2, 1/4, 1/8, \ldots)$. In this case, the sequence X is given by a **formula**.
- The Fibonacci sequence $F = (f_n) = (1, 1, 2, 3, 5, 8, ...)$ is given by

$$
f_1 = 1
$$
, $f_2 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$.

In this case, the sequence F is given by an **inductive formula**.

Limit of a Sequence

Definition (c.f. Definition 3.1.3). Let $X = (x_n)$ be a sequence in R and $x \in \mathbb{R}$. X is said to *converge* to x if for every $\varepsilon > 0$, there exist a natural number N such that

$$
|x_n - x| < \varepsilon, \qquad \forall n \ge N.
$$

In this case, x is said to be the *limit* of (x_n) and denoted by $x = \lim(x_n)$.

A sequence is said to be convergent if it has a limit and divergent if it is not convergent.

Remark. Notice the following:

- In the definition, the number $x \in \mathbb{R}$ is first specified and then proven to be the limit. In other words, we have to make a "guess" of the limit of the sequence first.
- The limit of a sequence is unique (c.f. 3.1.4 Uniqueness of Limits). i.e. If x and y are both the limit of a sequence, then $x = y$.

• Sometimes we may need to show that a sequence is divergent. i.e., do not converge to any $x \in \mathbb{R}$. We have to show that for any $x \in \mathbb{R}$, there exists an $\varepsilon > 0$ such that for any natural number N, there exists some $n \geq N$ such that $|x_n - x| \geq \varepsilon$.

Example 1 (c.f. Example 3.1.6(a)). $\lim(1/n) = 0$.

Solution. We need to show that for every $\varepsilon > 0$, there exists a natural number N such that

$$
\left|\frac{1}{n} - 0\right| < \varepsilon, \qquad \forall n \ge N.
$$

Note that if $n \geq N$,

$$
\left|\frac{1}{n} - 0\right| = \frac{1}{n} \le \frac{1}{N}.
$$

Let $\varepsilon > 0$. By Archimedean Property, there exists $N \in \mathbb{N}$ such that $1/N < \varepsilon$. Therefore

$$
\left|\frac{1}{n} - 0\right| \le \frac{1}{N} < \varepsilon, \qquad \forall n \ge N.
$$

Example 2 (c.f. Example 3.1.6(d)). $\lim(\sqrt{n+1} -$ √ $\overline{n})=0.$

Solution. We need to show that for every $\varepsilon > 0$, there exists a natural number N such that

$$
\left| \left(\sqrt{n+1} - \sqrt{n} \right) - 0 \right| < \varepsilon, \quad \forall n \ge N.
$$

After some calculations, we have

$$
|(\sqrt{n+1} - \sqrt{n}) - 0| = \frac{1}{\sqrt{n+1} + \sqrt{n}}.
$$

Hence if $n \geq N$,

$$
|(\sqrt{n+1} - \sqrt{n}) - 0| = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N}}.
$$

Let $\varepsilon > 0$. By **Archimedean Property**, there exists $N \in \mathbb{N}$ such that $N > 1/\varepsilon^2$. Therefore

$$
|(\sqrt{n+1} - \sqrt{n}) - 0| \le \frac{1}{\sqrt{N}} < \varepsilon, \qquad \forall n \ge N.
$$

Example 3 (c.f. Example 3.1.7). The sequence $(x_n) = (0, 2, 0, 2, ...)$ is divergent.

Solution. We need to show that the sequence will not converge to any number $x \in \mathbb{R}$. Let $x \in \mathbb{R}$ be any real number.

Now we need to choose a suitable $\varepsilon > 0$ such that whenever $N \in \mathbb{N}$, there exists $n \geq N$ such that $|x_n - x| \geq \varepsilon$.

Note that every odd term of the sequence is 0 and every even term of the sequence is 2. Hence no matter x is close to 0 or 2, we can pick a term in the sequence away from x.

Take $\varepsilon = 1$. For any natural number N, take n to be an even number greater than N if $x \leq 1$ and take *n* to be an odd number greater than *N* if $x > 1$. Then

- if $x \le 1$, $|x_n x| = |2 x| = 2 x \ge 1 = \varepsilon$.
- if $x > 1$, $|x_n x| = |0 x| = x > 1 = \varepsilon$.

Hence in any cases, there exists $n \geq N$ such that $|x_n - x| \geq \varepsilon$.

Prepared by Ernest Fan 2

Exercises

Question 1. Determine the limit of the sequence $X = (x_n)$, in the following cases. (Such limit may not exist.)

(a)
$$
x_n = 1 + (-1)^n
$$

\n(b) $x_n = \ln(2n)/\ln(n)$
\n(c) $x_n = \frac{1}{n(n+1)}$
\n(d) $x_n = \frac{4n-3}{2n-7}$
\n(e) $x_n = \sin x/n$, where $x \in \mathbb{R}$.
\n(f) $x_n = 2^n/n^2$

Solution. As a warm up exercise, no proofs are needed.

(a) Divergent. (b) 1. (c) 0. (d) 2. (e) six. 0. (f) Divergent.

Question 2. Prove your assertion of 1(d).

Solution. Note that if $n \geq N \geq 4$, (≥ 4 to make sure the denominator positive.)

$$
\left|\frac{4n-3}{2n-7}-2\right| = \left|\frac{11}{2n-7}\right| = \frac{11}{2n-7} \le \frac{11}{2N-7}.
$$

Let $\varepsilon > 0$. By Archimedean Property, there exists a natural number N such that

$$
N > \frac{1}{2} \left(\frac{11}{\varepsilon} + 7 \right) \quad \text{and} \quad N \ge 4.
$$

Hence if $n \geq N$,

$$
\left|\frac{4n-3}{2n-7}-2\right| \le \frac{11}{2n-7} \le \frac{11}{2N-7} < \varepsilon, \qquad \forall n \ge N.
$$

Question 3 (c.f. Section 3.1, Ex.14). Let $b \in \mathbb{R}$ satisfies $0 < b < 1$. Show that $\lim(n b^n) = 0$. **Solution.** Let $a = (1/b) - 1$. Then $a > 0$ and $b = 1/(1 + a)$. Hence

$$
|nb^{n} - 0| = nb^{n} = \frac{n}{(1+a)^{n}}.
$$

By Binomial Theorem, if $n \geq 2$, $(\geq 2$ to make sure the a^2 term exist.)

$$
(1+a)^n = 1 + na + \frac{1}{2}n(n-1)a^2 + \dots \ge \frac{1}{2}n(n-1)a^2.
$$

Hence if $n \geq N \geq 2$,

$$
|nb^{n} - 0| \le \frac{2n}{n(n-1)a^2} = \frac{2}{(n-1)a^2} \le \frac{2}{(N-1)a^2}.
$$

Let $\varepsilon > 0$. By **Archimedean Property**, there exists a natural number N such that

$$
N > \frac{2}{a^2 \varepsilon} + 1 \quad \text{and} \quad N \ge 2.
$$

Hence if $n \geq N$,

$$
|nb^n - 0| \le \frac{2}{(N-1)a^2} < \varepsilon, \qquad \forall n \ge N.
$$

Prepared by Ernest Fan 3